Source code for abcpy.NN_utilities.losses

import torch
import torch.nn as nn
import torch.nn.functional as F


[docs]class ContrastiveLoss(nn.Module): """ Contrastive loss Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise. Code from https://github.com/adambielski/siamese-triplet"""
[docs] def __init__(self, margin): super(ContrastiveLoss, self).__init__() self.margin = margin self.eps = 1e-9
[docs] def forward(self, output1, output2, target, size_average=True): distances = (output2 - output1).pow(2).sum(1) # squared distances losses = 0.5 * (target.float() * distances + (1 + -1 * target).float() * F.relu(self.margin - (distances + self.eps).sqrt()).pow(2)) return losses.mean() if size_average else losses.sum()
[docs]class TripletLoss(nn.Module): """ Triplet loss Takes embeddings of an anchor sample, a positive sample and a negative sample. Code from https://github.com/adambielski/siamese-triplet"""
[docs] def __init__(self, margin): super(TripletLoss, self).__init__() self.margin = margin
[docs] def forward(self, anchor, positive, negative, size_average=True): distance_positive = (anchor - positive).pow(2).sum(1) # .pow(.5) distance_negative = (anchor - negative).pow(2).sum(1) # .pow(.5) losses = F.relu(distance_positive - distance_negative + self.margin) return losses.mean() if size_average else losses.sum()
[docs]def Fisher_divergence_loss(first_der_t, second_der_t, eta, lam=0): """lam is the regularization parameter of the Kingma & LeCun (2010) regularization""" inner_prod_second_der_eta = torch.bmm(second_der_t, eta.unsqueeze(-1)) # this is used twice if lam == 0: return sum( (0.5 * torch.bmm(first_der_t, eta.unsqueeze(-1)) ** 2 + inner_prod_second_der_eta).view(-1)) else: return sum( (0.5 * torch.bmm(first_der_t, eta.unsqueeze(-1)) ** 2 + inner_prod_second_der_eta + lam * inner_prod_second_der_eta ** 2).view(-1))
[docs]def Fisher_divergence_loss_with_c_x(first_der_t, second_der_t, eta, lam=0): # this enables to use the term c(x) in the approximating family, ie a term that depends only on x and not on theta. new_eta = torch.cat((eta, torch.ones(eta.shape[0], 1).to(eta)), dim=1) # the one tensor need to be on same device as eta. # then call the other loss function with this new_eta: return Fisher_divergence_loss(first_der_t, second_der_t, new_eta, lam=lam)